Mac OS X work...lots of little changes that touch a lot of random places.

Still work to be done, but this at least matches the PowerPC Linux status
 now.

MacOS-specific directory (and XCode project) is gone...this now uses SDL,
 OpenAL, and the Unix Makefiles.

--ryan.
This commit is contained in:
Ryan C. Gordon 2005-11-26 07:46:21 +00:00
parent b20b86bbbe
commit 721b9a7d01
61 changed files with 877 additions and 22868 deletions

View file

@ -46,7 +46,22 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#elif defined(MACOS_X)
#include "macosx_glimp.h"
#include <OpenGL/OpenGL.h>
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#ifndef GL_EXT_abgr
#include <OpenGL/glext.h>
#endif
// This can be defined to use the CGLMacro.h support which avoids looking up
// the current context.
//#define USE_CGLMACROS
#ifdef USE_CGLMACROS
#include "macosx_local.h"
#define cgl_ctx glw_state._cgl_ctx
#include <OpenGL/CGLMacro.h>
#endif
#elif defined( __linux__ ) || defined(__FreeBSD__)
@ -164,7 +179,7 @@ extern void ( APIENTRY * qglUnlockArraysEXT) (void);
#include "qgl_linked.h"
#elif defined(MACOS_X)
#elif (defined(MACOS_X) && !defined(USE_SDL_VIDEO))
// This includes #ifdefs for optional logging and GL error checking after every GL call as well as #defines to prevent incorrect usage of the non-'qgl' versions of the GL API.
#include "macosx_qgl.h"

View file

@ -113,7 +113,7 @@ static void MakeMeshNormals( int width, int height, drawVert_t ctrl[MAX_GRID_SIZ
int i, j, k, dist;
vec3_t normal;
vec3_t sum;
int count;
int count = 0;
vec3_t base;
vec3_t delta;
int x, y;

View file

@ -150,12 +150,15 @@ int max_polys;
cvar_t *r_maxpolyverts;
int max_polyverts;
/* !!! FIXME: Why are these here?! */
#if 0
void ( APIENTRY * qglMultiTexCoord2fARB )( GLenum texture, GLfloat s, GLfloat t );
void ( APIENTRY * qglActiveTextureARB )( GLenum texture );
void ( APIENTRY * qglClientActiveTextureARB )( GLenum texture );
void ( APIENTRY * qglLockArraysEXT)( GLint, GLint);
void ( APIENTRY * qglUnlockArraysEXT) ( void );
#endif
static void AssertCvarRange( cvar_t *cv, float minVal, float maxVal, qboolean shouldBeIntegral )
{

View file

@ -402,9 +402,9 @@ ProjectDlightTexture
Perform dynamic lighting with another rendering pass
===================
*/
static void ProjectDlightTexture( void ) {
int i, l;
#if idppc_altivec
static void ProjectDlightTexture_altivec( void ) {
int i, l;
vec_t origin0, origin1, origin2;
float texCoords0, texCoords1;
vector float floatColorVec0, floatColorVec1;
@ -412,13 +412,10 @@ static void ProjectDlightTexture( void ) {
vector short colorShort;
vector signed int colorInt;
vector unsigned char floatColorVecPerm, modulatePerm, colorChar;
vector unsigned char vSel = (vector unsigned char){0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff};
#else
vec3_t origin;
#endif
vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff);
float *texCoords;
byte *colors;
byte clipBits[SHADER_MAX_VERTEXES];
@ -429,20 +426,18 @@ static void ProjectDlightTexture( void ) {
float scale;
float radius;
vec3_t floatColor;
float modulate;
float modulate = 0.0f;
if ( !backEnd.refdef.num_dlights ) {
return;
}
#if idppc_altivec
// There has to be a better way to do this so that floatColor
// There has to be a better way to do this so that floatColor
// and/or modulate are already 16-byte aligned.
floatColorVecPerm = vec_lvsl(0,(float *)floatColor);
modulatePerm = vec_lvsl(0,(float *)&modulate);
modulatePerm = (vector unsigned char)vec_splat((vector unsigned int)modulatePerm,0);
zero = (vector float)vec_splat_s8(0);
#endif
for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
dlight_t *dl;
@ -454,27 +449,20 @@ static void ProjectDlightTexture( void ) {
colors = colorArray[0];
dl = &backEnd.refdef.dlights[l];
#if idppc_altivec
origin0 = dl->transformed[0];
origin1 = dl->transformed[1];
origin2 = dl->transformed[2];
#else
VectorCopy( dl->transformed, origin );
#endif
radius = dl->radius;
scale = 1.0f / radius;
floatColor[0] = dl->color[0] * 255.0f;
floatColor[1] = dl->color[1] * 255.0f;
floatColor[2] = dl->color[2] * 255.0f;
#if idppc_altivec
floatColorVec0 = vec_ld(0, floatColor);
floatColorVec1 = vec_ld(11, floatColor);
floatColorVec0 = vec_perm(floatColorVec0,floatColorVec0,floatColorVecPerm);
#endif
for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) {
int clip = 0;
#if idppc_altivec
#define DIST0 dist0
#define DIST1 dist1
#define DIST2 dist2
@ -485,16 +473,6 @@ static void ProjectDlightTexture( void ) {
dist0 = origin0 - tess.xyz[i][0];
dist1 = origin1 - tess.xyz[i][1];
dist2 = origin2 - tess.xyz[i][2];
#else
#define DIST0 dist[0]
#define DIST1 dist[1]
#define DIST2 dist[2]
#define TEXCOORDS0 texCoords[0]
#define TEXCOORDS1 texCoords[1]
vec3_t dist;
VectorSubtract( origin, tess.xyz[i], dist );
#endif
backEnd.pc.c_dlightVertexes++;
@ -539,7 +517,6 @@ static void ProjectDlightTexture( void ) {
}
clipBits[i] = clip;
#if idppc_altivec
modulateVec = vec_ld(0,(float *)&modulate);
modulateVec = vec_perm(modulateVec,modulateVec,modulatePerm);
colorVec = vec_madd(floatColorVec0,modulateVec,zero);
@ -548,12 +525,6 @@ static void ProjectDlightTexture( void ) {
colorChar = vec_packsu(colorShort,colorShort); // RGBxRGBxRGBxRGBx
colorChar = vec_sel(colorChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255
vec_ste((vector unsigned int)colorChar,0,(unsigned int *)colors); // store color
#else
colors[0] = myftol(floatColor[0] * modulate);
colors[1] = myftol(floatColor[1] * modulate);
colors[2] = myftol(floatColor[2] * modulate);
colors[3] = 255;
#endif
}
#undef DIST0
#undef DIST1
@ -602,6 +573,162 @@ static void ProjectDlightTexture( void ) {
backEnd.pc.c_dlightIndexes += numIndexes;
}
}
#endif
static void ProjectDlightTexture_scalar( void ) {
int i, l;
vec3_t origin;
float *texCoords;
byte *colors;
byte clipBits[SHADER_MAX_VERTEXES];
float texCoordsArray[SHADER_MAX_VERTEXES][2];
byte colorArray[SHADER_MAX_VERTEXES][4];
unsigned hitIndexes[SHADER_MAX_INDEXES];
int numIndexes;
float scale;
float radius;
vec3_t floatColor;
float modulate = 0.0f;
if ( !backEnd.refdef.num_dlights ) {
return;
}
for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
dlight_t *dl;
if ( !( tess.dlightBits & ( 1 << l ) ) ) {
continue; // this surface definately doesn't have any of this light
}
texCoords = texCoordsArray[0];
colors = colorArray[0];
dl = &backEnd.refdef.dlights[l];
VectorCopy( dl->transformed, origin );
radius = dl->radius;
scale = 1.0f / radius;
floatColor[0] = dl->color[0] * 255.0f;
floatColor[1] = dl->color[1] * 255.0f;
floatColor[2] = dl->color[2] * 255.0f;
for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) {
int clip = 0;
#define DIST0 dist[0]
#define DIST1 dist[1]
#define DIST2 dist[2]
#define TEXCOORDS0 texCoords[0]
#define TEXCOORDS1 texCoords[1]
vec3_t dist;
VectorSubtract( origin, tess.xyz[i], dist );
backEnd.pc.c_dlightVertexes++;
TEXCOORDS0 = 0.5f + DIST0 * scale;
TEXCOORDS1 = 0.5f + DIST1 * scale;
if( !r_dlightBacks->integer &&
// dist . tess.normal[i]
( DIST0 * tess.normal[i][0] +
DIST1 * tess.normal[i][1] +
DIST2 * tess.normal[i][2] ) < 0.0f ) {
clip = 63;
} else {
if ( TEXCOORDS0 < 0.0f ) {
clip |= 1;
} else if ( TEXCOORDS0 > 1.0f ) {
clip |= 2;
}
if ( TEXCOORDS1 < 0.0f ) {
clip |= 4;
} else if ( TEXCOORDS1 > 1.0f ) {
clip |= 8;
}
texCoords[0] = TEXCOORDS0;
texCoords[1] = TEXCOORDS1;
// modulate the strength based on the height and color
if ( DIST2 > radius ) {
clip |= 16;
modulate = 0.0f;
} else if ( DIST2 < -radius ) {
clip |= 32;
modulate = 0.0f;
} else {
DIST2 = Q_fabs(DIST2);
if ( DIST2 < radius * 0.5f ) {
modulate = 1.0f;
} else {
modulate = 2.0f * (radius - DIST2) * scale;
}
}
}
clipBits[i] = clip;
colors[0] = myftol(floatColor[0] * modulate);
colors[1] = myftol(floatColor[1] * modulate);
colors[2] = myftol(floatColor[2] * modulate);
colors[3] = 255;
}
#undef DIST0
#undef DIST1
#undef DIST2
#undef TEXCOORDS0
#undef TEXCOORDS1
// build a list of triangles that need light
numIndexes = 0;
for ( i = 0 ; i < tess.numIndexes ; i += 3 ) {
int a, b, c;
a = tess.indexes[i];
b = tess.indexes[i+1];
c = tess.indexes[i+2];
if ( clipBits[a] & clipBits[b] & clipBits[c] ) {
continue; // not lighted
}
hitIndexes[numIndexes] = a;
hitIndexes[numIndexes+1] = b;
hitIndexes[numIndexes+2] = c;
numIndexes += 3;
}
if ( !numIndexes ) {
continue;
}
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] );
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
GL_Bind( tr.dlightImage );
// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
// where they aren't rendered
if ( dl->additive ) {
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
else {
GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
R_DrawElements( numIndexes, hitIndexes );
backEnd.pc.c_totalIndexes += numIndexes;
backEnd.pc.c_dlightIndexes += numIndexes;
}
}
static void ProjectDlightTexture( void ) {
#if idppc_altivec
extern cvar_t *com_altivec;
if (com_altivec->integer) {
// must be in a seperate function or G3 systems will crash.
ProjectDlightTexture_altivec();
return;
}
#endif
ProjectDlightTexture_scalar();
}
/*

View file

@ -1097,22 +1097,19 @@ void RB_CalcSpecularAlpha( unsigned char *alphas ) {
**
** The basic vertex lighting calc
*/
void RB_CalcDiffuseColor( unsigned char *colors )
#if idppc_altivec
static void RB_CalcDiffuseColor_altivec( unsigned char *colors )
{
int i, j;
int i;
float *v, *normal;
float incoming;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t ambientLight;
vec3_t lightDir;
vec3_t directedLight;
int numVertexes;
#if idppc_altivec
vector unsigned char vSel = (vector unsigned char){0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff};
vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff);
vector float ambientLightVec;
vector float directedLightVec;
vector float lightDirVec;
@ -1122,10 +1119,8 @@ void RB_CalcDiffuseColor( unsigned char *colors )
vector signed int jVecInt;
vector signed short jVecShort;
vector unsigned char jVecChar, normalPerm;
#endif
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
#if idppc_altivec
// A lot of this could be simplified if we made sure
// entities light info was 16-byte aligned.
jVecChar = vec_lvsl(0, ent->ambientLight);
@ -1145,21 +1140,13 @@ void RB_CalcDiffuseColor( unsigned char *colors )
zero = (vector float)vec_splat_s8(0);
VectorCopy( ent->lightDir, lightDir );
#else
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
#endif
v = tess.xyz[0];
normal = tess.normal[0];
#if idppc_altivec
normalPerm = vec_lvsl(0,normal);
#endif
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
#if idppc_altivec
normalVec0 = vec_ld(0,(vector float *)normal);
normalVec1 = vec_ld(11,(vector float *)normal);
normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
@ -1177,7 +1164,32 @@ void RB_CalcDiffuseColor( unsigned char *colors )
jVecChar = vec_packsu(jVecShort,jVecShort); // RGBxRGBxRGBxRGBx
jVecChar = vec_sel(jVecChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255
vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]); // store color
#else
}
}
#endif
static void RB_CalcDiffuseColor_scalar( unsigned char *colors )
{
int i, j;
float *v, *normal;
float incoming;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t ambientLight;
vec3_t lightDir;
vec3_t directedLight;
int numVertexes;
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
v = tess.xyz[0];
normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
incoming = DotProduct (normal, lightDir);
if ( incoming <= 0 ) {
*(int *)&colors[i*4] = ambientLightInt;
@ -1202,7 +1214,19 @@ void RB_CalcDiffuseColor( unsigned char *colors )
colors[i*4+2] = j;
colors[i*4+3] = 255;
#endif
}
}
void RB_CalcDiffuseColor( unsigned char *colors )
{
#if idppc_altivec
extern cvar_t *com_altivec;
if (com_altivec->integer) {
// must be in a seperate function or G3 systems will crash.
RB_CalcDiffuseColor_altivec( colors );
return;
}
#endif
RB_CalcDiffuseColor_scalar( colors );
}

View file

@ -610,7 +610,8 @@ static void VectorArrayNormalize(vec4_t *normals, unsigned int count)
/*
** LerpMeshVertexes
*/
static void LerpMeshVertexes (md3Surface_t *surf, float backlerp)
#if idppc_altivec
static void LerpMeshVertexes_altivec(md3Surface_t *surf, float backlerp)
{
short *oldXyz, *newXyz, *oldNormals, *newNormals;
float *outXyz, *outNormal;
@ -633,7 +634,6 @@ static void LerpMeshVertexes (md3Surface_t *surf, float backlerp)
numVerts = surf->numVerts;
if ( backlerp == 0 ) {
#if idppc_altivec
vector signed short newNormalsVec0;
vector signed short newNormalsVec1;
vector signed int newNormalsIntVec;
@ -687,34 +687,6 @@ static void LerpMeshVertexes (md3Surface_t *surf, float backlerp)
vec_ste(newNormalsFloatVec,4,outXyz);
vec_ste(newNormalsFloatVec,8,outXyz);
}
#else
//
// just copy the vertexes
//
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
newXyz += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
outXyz[0] = newXyz[0] * newXyzScale;
outXyz[1] = newXyz[1] * newXyzScale;
outXyz[2] = newXyz[2] * newXyzScale;
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
}
#endif
} else {
//
// interpolate and copy the vertex and normal
@ -764,6 +736,132 @@ static void LerpMeshVertexes (md3Surface_t *surf, float backlerp)
VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
}
}
#endif
static void LerpMeshVertexes_scalar(md3Surface_t *surf, float backlerp)
{
short *oldXyz, *newXyz, *oldNormals, *newNormals;
float *outXyz, *outNormal;
float oldXyzScale, newXyzScale;
float oldNormalScale, newNormalScale;
int vertNum;
unsigned lat, lng;
int numVerts;
outXyz = tess.xyz[tess.numVertexes];
outNormal = tess.normal[tess.numVertexes];
newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
newNormals = newXyz + 3;
newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
newNormalScale = 1.0 - backlerp;
numVerts = surf->numVerts;
if ( backlerp == 0 ) {
//
// just copy the vertexes
//
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
newXyz += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
outXyz[0] = newXyz[0] * newXyzScale;
outXyz[1] = newXyz[1] * newXyzScale;
outXyz[2] = newXyz[2] * newXyzScale;
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
}
} else {
//
// interpolate and copy the vertex and normal
//
oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
oldNormals = oldXyz + 3;
oldXyzScale = MD3_XYZ_SCALE * backlerp;
oldNormalScale = backlerp;
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
vec3_t uncompressedOldNormal, uncompressedNewNormal;
// interpolate the xyz
outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;
// FIXME: interpolate lat/long instead?
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
lat = ( oldNormals[0] >> 8 ) & 0xff;
lng = ( oldNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;
// VectorNormalize (outNormal);
}
VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
}
}
static void LerpMeshVertexes(md3Surface_t *surf, float backlerp)
{
#if idppc_altivec
// !!! FIXME: figure out what's broken and remove this.
#ifndef NDEBUG
static int already_complained = 0;
if (!already_complained)
{
already_complained = 1;
Com_Printf("WARNING! FIXME! Altivec mesh lerping broken in debug builds!\n");
}
#else
extern cvar_t *com_altivec;
if (com_altivec->integer) {
// must be in a seperate function or G3 systems will crash.
LerpMeshVertexes_altivec( surf, backlerp );
return;
}
#endif
#endif // idppc_altivec
LerpMeshVertexes_scalar( surf, backlerp );
}
/*
=============

View file

@ -218,6 +218,11 @@ typedef struct {
#define _3DFX_DRIVER_NAME "3dfxvgl"
#define OPENGL_DRIVER_NAME "opengl32"
#elif defined(MACOS_X)
#define _3DFX_DRIVER_NAME "libMesaVoodooGL.dylib"
#define OPENGL_DRIVER_NAME "/System/Library/Frameworks/OpenGL.framework/Libraries/libGL.dylib"
#else
#define _3DFX_DRIVER_NAME "libMesaVoodooGL.so"