OpenGL2: Clean up texmod calculations, and improve vertex animation handling.
This commit is contained in:
parent
f8355ba2fb
commit
08fcecc829
7 changed files with 92 additions and 604 deletions
|
@ -84,42 +84,16 @@ static float EvalWaveFormClamped( const waveForm_t *wf )
|
|||
}
|
||||
|
||||
/*
|
||||
** RB_CalcStretchTexCoords
|
||||
** RB_CalcStretchTexMatrix
|
||||
*/
|
||||
void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st )
|
||||
{
|
||||
float p;
|
||||
texModInfo_t tmi;
|
||||
|
||||
p = 1.0f / EvalWaveForm( wf );
|
||||
|
||||
tmi.matrix[0][0] = p;
|
||||
tmi.matrix[1][0] = 0;
|
||||
tmi.translate[0] = 0.5f - 0.5f * p;
|
||||
|
||||
tmi.matrix[0][1] = 0;
|
||||
tmi.matrix[1][1] = p;
|
||||
tmi.translate[1] = 0.5f - 0.5f * p;
|
||||
|
||||
RB_CalcTransformTexCoords( &tmi, st );
|
||||
}
|
||||
|
||||
void RB_CalcStretchTexMatrix( const waveForm_t *wf, float *matrix )
|
||||
{
|
||||
float p;
|
||||
texModInfo_t tmi;
|
||||
|
||||
p = 1.0f / EvalWaveForm( wf );
|
||||
|
||||
tmi.matrix[0][0] = p;
|
||||
tmi.matrix[1][0] = 0;
|
||||
tmi.translate[0] = 0.5f - 0.5f * p;
|
||||
|
||||
tmi.matrix[0][1] = 0;
|
||||
tmi.matrix[1][1] = p;
|
||||
tmi.translate[1] = 0.5f - 0.5f * p;
|
||||
|
||||
RB_CalcTransformTexMatrix( &tmi, matrix );
|
||||
matrix[0] = p; matrix[2] = 0; matrix[4] = 0.5f - 0.5f * p;
|
||||
matrix[1] = 0; matrix[3] = p; matrix[5] = 0.5f - 0.5f * p;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -618,88 +592,6 @@ COLORS
|
|||
*/
|
||||
|
||||
|
||||
/*
|
||||
** RB_CalcColorFromEntity
|
||||
*/
|
||||
void RB_CalcColorFromEntity( unsigned char *dstColors )
|
||||
{
|
||||
int i;
|
||||
int *pColors = ( int * ) dstColors;
|
||||
int c;
|
||||
|
||||
if ( !backEnd.currentEntity )
|
||||
return;
|
||||
|
||||
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
|
||||
{
|
||||
*pColors = c;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcColorFromOneMinusEntity
|
||||
*/
|
||||
void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors )
|
||||
{
|
||||
int i;
|
||||
int *pColors = ( int * ) dstColors;
|
||||
unsigned char invModulate[4];
|
||||
int c;
|
||||
|
||||
if ( !backEnd.currentEntity )
|
||||
return;
|
||||
|
||||
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
|
||||
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
|
||||
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
|
||||
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
|
||||
|
||||
c = * ( int * ) invModulate;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
|
||||
{
|
||||
*pColors = c;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcAlphaFromEntity
|
||||
*/
|
||||
void RB_CalcAlphaFromEntity( unsigned char *dstColors )
|
||||
{
|
||||
int i;
|
||||
|
||||
if ( !backEnd.currentEntity )
|
||||
return;
|
||||
|
||||
dstColors += 3;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
|
||||
{
|
||||
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcAlphaFromOneMinusEntity
|
||||
*/
|
||||
void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors )
|
||||
{
|
||||
int i;
|
||||
|
||||
if ( !backEnd.currentEntity )
|
||||
return;
|
||||
|
||||
dstColors += 3;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
|
||||
{
|
||||
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcWaveColorSingle
|
||||
*/
|
||||
|
@ -723,29 +615,6 @@ float RB_CalcWaveColorSingle( const waveForm_t *wf )
|
|||
return glow;
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcWaveColor
|
||||
*/
|
||||
void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors )
|
||||
{
|
||||
int i;
|
||||
int v;
|
||||
float glow;
|
||||
int *colors = ( int * ) dstColors;
|
||||
byte color[4];
|
||||
|
||||
glow = RB_CalcWaveColorSingle( wf );
|
||||
|
||||
v = ri.ftol(255 * glow);
|
||||
color[0] = color[1] = color[2] = v;
|
||||
color[3] = 255;
|
||||
v = *(int *)color;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
|
||||
*colors = v;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcWaveAlphaSingle
|
||||
*/
|
||||
|
@ -754,25 +623,6 @@ float RB_CalcWaveAlphaSingle( const waveForm_t *wf )
|
|||
return EvalWaveFormClamped( wf );
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcWaveAlpha
|
||||
*/
|
||||
void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors )
|
||||
{
|
||||
int i;
|
||||
int v;
|
||||
float glow;
|
||||
|
||||
glow = EvalWaveFormClamped( wf );
|
||||
|
||||
v = 255 * glow;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
|
||||
{
|
||||
dstColors[3] = v;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcModulateColorsByFog
|
||||
*/
|
||||
|
@ -793,45 +643,6 @@ void RB_CalcModulateColorsByFog( unsigned char *colors ) {
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcModulateAlphasByFog
|
||||
*/
|
||||
void RB_CalcModulateAlphasByFog( unsigned char *colors ) {
|
||||
int i;
|
||||
float texCoords[SHADER_MAX_VERTEXES][2];
|
||||
|
||||
// calculate texcoords so we can derive density
|
||||
// this is not wasted, because it would only have
|
||||
// been previously called if the surface was opaque
|
||||
RB_CalcFogTexCoords( texCoords[0] );
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
|
||||
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
||||
colors[3] *= f;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcModulateRGBAsByFog
|
||||
*/
|
||||
void RB_CalcModulateRGBAsByFog( unsigned char *colors ) {
|
||||
int i;
|
||||
float texCoords[SHADER_MAX_VERTEXES][2];
|
||||
|
||||
// calculate texcoords so we can derive density
|
||||
// this is not wasted, because it would only have
|
||||
// been previously called if the surface was opaque
|
||||
RB_CalcFogTexCoords( texCoords[0] );
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
|
||||
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
||||
colors[0] *= f;
|
||||
colors[1] *= f;
|
||||
colors[2] *= f;
|
||||
colors[3] *= f;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
====================================================================
|
||||
|
@ -928,118 +739,27 @@ void RB_CalcFogTexCoords( float *st ) {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** RB_CalcEnvironmentTexCoords
|
||||
** RB_CalcTurbulentFactors
|
||||
*/
|
||||
void RB_CalcEnvironmentTexCoords( float *st )
|
||||
void RB_CalcTurbulentFactors( const waveForm_t *wf, float *amplitude, float *now )
|
||||
{
|
||||
int i;
|
||||
float *v, *normal;
|
||||
vec3_t viewer, reflected;
|
||||
float d;
|
||||
|
||||
v = tess.xyz[0];
|
||||
normal = tess.normal[0];
|
||||
|
||||
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
|
||||
{
|
||||
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
|
||||
VectorNormalizeFast (viewer);
|
||||
|
||||
d = DotProduct (normal, viewer);
|
||||
|
||||
reflected[0] = normal[0]*2*d - viewer[0];
|
||||
reflected[1] = normal[1]*2*d - viewer[1];
|
||||
reflected[2] = normal[2]*2*d - viewer[2];
|
||||
|
||||
st[0] = 0.5 + reflected[1] * 0.5;
|
||||
st[1] = 0.5 - reflected[2] * 0.5;
|
||||
}
|
||||
*now = wf->phase + tess.shaderTime * wf->frequency;
|
||||
*amplitude = wf->amplitude;
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcTurbulentTexCoords
|
||||
** RB_CalcScaleTexMatrix
|
||||
*/
|
||||
void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st )
|
||||
{
|
||||
int i;
|
||||
float now;
|
||||
|
||||
now = ( wf->phase + tess.shaderTime * wf->frequency );
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
||||
{
|
||||
float s = st[0];
|
||||
float t = st[1];
|
||||
|
||||
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
|
||||
st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
|
||||
}
|
||||
}
|
||||
|
||||
void RB_CalcTurbulentTexMatrix( const waveForm_t *wf, matrix_t matrix )
|
||||
{
|
||||
float now;
|
||||
|
||||
now = ( wf->phase + tess.shaderTime * wf->frequency );
|
||||
|
||||
// bit of a hack here, hide amplitude and now in the matrix
|
||||
// the vertex program will extract them and perform a turbulent pass last if it's nonzero
|
||||
|
||||
matrix[ 0] = 1.0f; matrix[ 4] = 0.0f; matrix[ 8] = 0.0f; matrix[12] = wf->amplitude;
|
||||
matrix[ 1] = 0.0f; matrix[ 5] = 1.0f; matrix[ 9] = 0.0f; matrix[13] = now;
|
||||
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
|
||||
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcScaleTexCoords
|
||||
*/
|
||||
void RB_CalcScaleTexCoords( const float scale[2], float *st )
|
||||
{
|
||||
int i;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
||||
{
|
||||
st[0] *= scale[0];
|
||||
st[1] *= scale[1];
|
||||
}
|
||||
}
|
||||
|
||||
void RB_CalcScaleTexMatrix( const float scale[2], float *matrix )
|
||||
{
|
||||
matrix[ 0] = scale[0]; matrix[ 4] = 0.0f; matrix[ 8] = 0.0f; matrix[12] = 0.0f;
|
||||
matrix[ 1] = 0.0f; matrix[ 5] = scale[1]; matrix[ 9] = 0.0f; matrix[13] = 0.0f;
|
||||
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
|
||||
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
|
||||
matrix[0] = scale[0]; matrix[2] = 0.0f; matrix[4] = 0.0f;
|
||||
matrix[1] = 0.0f; matrix[3] = scale[1]; matrix[5] = 0.0f;
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcScrollTexCoords
|
||||
** RB_CalcScrollTexMatrix
|
||||
*/
|
||||
void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st )
|
||||
{
|
||||
int i;
|
||||
float timeScale = tess.shaderTime;
|
||||
float adjustedScrollS, adjustedScrollT;
|
||||
|
||||
adjustedScrollS = scrollSpeed[0] * timeScale;
|
||||
adjustedScrollT = scrollSpeed[1] * timeScale;
|
||||
|
||||
// clamp so coordinates don't continuously get larger, causing problems
|
||||
// with hardware limits
|
||||
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
|
||||
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
||||
{
|
||||
st[0] += adjustedScrollS;
|
||||
st[1] += adjustedScrollT;
|
||||
}
|
||||
}
|
||||
|
||||
void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix )
|
||||
{
|
||||
float timeScale = tess.shaderTime;
|
||||
|
@ -1053,73 +773,28 @@ void RB_CalcScrollTexMatrix( const float scrollSpeed[2], float *matrix )
|
|||
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
|
||||
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
|
||||
|
||||
|
||||
matrix[ 0] = 1.0f; matrix[ 4] = 0.0f; matrix[ 8] = adjustedScrollS; matrix[12] = 0.0f;
|
||||
matrix[ 1] = 0.0f; matrix[ 5] = 1.0f; matrix[ 9] = adjustedScrollT; matrix[13] = 0.0f;
|
||||
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
|
||||
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
|
||||
matrix[0] = 1.0f; matrix[2] = 0.0f; matrix[4] = adjustedScrollS;
|
||||
matrix[1] = 0.0f; matrix[3] = 1.0f; matrix[5] = adjustedScrollT;
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcTransformTexCoords
|
||||
** RB_CalcTransformTexMatrix
|
||||
*/
|
||||
void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st )
|
||||
{
|
||||
int i;
|
||||
|
||||
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
||||
{
|
||||
float s = st[0];
|
||||
float t = st[1];
|
||||
|
||||
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
|
||||
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
|
||||
}
|
||||
}
|
||||
|
||||
void RB_CalcTransformTexMatrix( const texModInfo_t *tmi, float *matrix )
|
||||
{
|
||||
matrix[ 0] = tmi->matrix[0][0]; matrix[ 4] = tmi->matrix[1][0]; matrix[ 8] = tmi->translate[0]; matrix[12] = 0.0f;
|
||||
matrix[ 1] = tmi->matrix[0][1]; matrix[ 5] = tmi->matrix[1][1]; matrix[ 9] = tmi->translate[1]; matrix[13] = 0.0f;
|
||||
matrix[ 2] = 0.0f; matrix[ 6] = 0.0f; matrix[10] = 1.0f; matrix[14] = 0.0f;
|
||||
matrix[ 3] = 0.0f; matrix[ 7] = 0.0f; matrix[11] = 0.0f; matrix[15] = 1.0f;
|
||||
matrix[0] = tmi->matrix[0][0]; matrix[2] = tmi->matrix[1][0]; matrix[4] = tmi->translate[0];
|
||||
matrix[1] = tmi->matrix[0][1]; matrix[3] = tmi->matrix[1][1]; matrix[5] = tmi->translate[1];
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcRotateTexCoords
|
||||
** RB_CalcRotateTexMatrix
|
||||
*/
|
||||
void RB_CalcRotateTexCoords( float degsPerSecond, float *st )
|
||||
{
|
||||
float timeScale = tess.shaderTime;
|
||||
float degs;
|
||||
int index;
|
||||
float sinValue, cosValue;
|
||||
texModInfo_t tmi;
|
||||
|
||||
degs = -degsPerSecond * timeScale;
|
||||
index = degs * ( FUNCTABLE_SIZE / 360.0f );
|
||||
|
||||
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
|
||||
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
|
||||
|
||||
tmi.matrix[0][0] = cosValue;
|
||||
tmi.matrix[1][0] = -sinValue;
|
||||
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
|
||||
|
||||
tmi.matrix[0][1] = sinValue;
|
||||
tmi.matrix[1][1] = cosValue;
|
||||
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
|
||||
|
||||
RB_CalcTransformTexCoords( &tmi, st );
|
||||
}
|
||||
|
||||
void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix )
|
||||
{
|
||||
float timeScale = tess.shaderTime;
|
||||
float degs;
|
||||
int index;
|
||||
float sinValue, cosValue;
|
||||
texModInfo_t tmi;
|
||||
|
||||
degs = -degsPerSecond * timeScale;
|
||||
index = degs * ( FUNCTABLE_SIZE / 360.0f );
|
||||
|
@ -1127,213 +802,6 @@ void RB_CalcRotateTexMatrix( float degsPerSecond, float *matrix )
|
|||
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
|
||||
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
|
||||
|
||||
tmi.matrix[0][0] = cosValue;
|
||||
tmi.matrix[1][0] = -sinValue;
|
||||
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
|
||||
|
||||
tmi.matrix[0][1] = sinValue;
|
||||
tmi.matrix[1][1] = cosValue;
|
||||
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
|
||||
|
||||
RB_CalcTransformTexMatrix( &tmi, matrix );
|
||||
matrix[0] = cosValue; matrix[2] = -sinValue; matrix[4] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
|
||||
matrix[1] = sinValue; matrix[3] = cosValue; matrix[5] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
|
||||
}
|
||||
/*
|
||||
** RB_CalcSpecularAlpha
|
||||
**
|
||||
** Calculates specular coefficient and places it in the alpha channel
|
||||
*/
|
||||
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
|
||||
|
||||
void RB_CalcSpecularAlpha( unsigned char *alphas ) {
|
||||
int i;
|
||||
float *v, *normal;
|
||||
vec3_t viewer, reflected;
|
||||
float l, d;
|
||||
int b;
|
||||
vec3_t lightDir;
|
||||
int numVertexes;
|
||||
|
||||
v = tess.xyz[0];
|
||||
normal = tess.normal[0];
|
||||
|
||||
alphas += 3;
|
||||
|
||||
numVertexes = tess.numVertexes;
|
||||
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
|
||||
float ilength;
|
||||
|
||||
VectorSubtract( lightOrigin, v, lightDir );
|
||||
// ilength = Q_rsqrt( DotProduct( lightDir, lightDir ) );
|
||||
VectorNormalizeFast( lightDir );
|
||||
|
||||
// calculate the specular color
|
||||
d = DotProduct (normal, lightDir);
|
||||
// d *= ilength;
|
||||
|
||||
// we don't optimize for the d < 0 case since this tends to
|
||||
// cause visual artifacts such as faceted "snapping"
|
||||
reflected[0] = normal[0]*2*d - lightDir[0];
|
||||
reflected[1] = normal[1]*2*d - lightDir[1];
|
||||
reflected[2] = normal[2]*2*d - lightDir[2];
|
||||
|
||||
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
|
||||
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
|
||||
l = DotProduct (reflected, viewer);
|
||||
l *= ilength;
|
||||
|
||||
if (l < 0) {
|
||||
b = 0;
|
||||
} else {
|
||||
l = l*l;
|
||||
l = l*l;
|
||||
b = l * 255;
|
||||
if (b > 255) {
|
||||
b = 255;
|
||||
}
|
||||
}
|
||||
|
||||
*alphas = b;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** RB_CalcDiffuseColor
|
||||
**
|
||||
** The basic vertex lighting calc
|
||||
*/
|
||||
#if idppc_altivec
|
||||
static void RB_CalcDiffuseColor_altivec( unsigned char *colors )
|
||||
{
|
||||
int i;
|
||||
float *v, *normal;
|
||||
trRefEntity_t *ent;
|
||||
int ambientLightInt;
|
||||
vec3_t lightDir;
|
||||
int numVertexes;
|
||||
vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
|
||||
0x00, 0x00, 0x00, 0xff,
|
||||
0x00, 0x00, 0x00, 0xff,
|
||||
0x00, 0x00, 0x00, 0xff);
|
||||
vector float ambientLightVec;
|
||||
vector float directedLightVec;
|
||||
vector float lightDirVec;
|
||||
vector float normalVec0, normalVec1;
|
||||
vector float incomingVec0, incomingVec1, incomingVec2;
|
||||
vector float zero, jVec;
|
||||
vector signed int jVecInt;
|
||||
vector signed short jVecShort;
|
||||
vector unsigned char jVecChar, normalPerm;
|
||||
ent = backEnd.currentEntity;
|
||||
ambientLightInt = ent->ambientLightInt;
|
||||
// A lot of this could be simplified if we made sure
|
||||
// entities light info was 16-byte aligned.
|
||||
jVecChar = vec_lvsl(0, ent->ambientLight);
|
||||
ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight);
|
||||
jVec = vec_ld(11, (vector float *)ent->ambientLight);
|
||||
ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar);
|
||||
|
||||
jVecChar = vec_lvsl(0, ent->directedLight);
|
||||
directedLightVec = vec_ld(0,(vector float *)ent->directedLight);
|
||||
jVec = vec_ld(11,(vector float *)ent->directedLight);
|
||||
directedLightVec = vec_perm(directedLightVec,jVec,jVecChar);
|
||||
|
||||
jVecChar = vec_lvsl(0, ent->lightDir);
|
||||
lightDirVec = vec_ld(0,(vector float *)ent->lightDir);
|
||||
jVec = vec_ld(11,(vector float *)ent->lightDir);
|
||||
lightDirVec = vec_perm(lightDirVec,jVec,jVecChar);
|
||||
|
||||
zero = (vector float)vec_splat_s8(0);
|
||||
VectorCopy( ent->lightDir, lightDir );
|
||||
|
||||
v = tess.xyz[0];
|
||||
normal = tess.normal[0];
|
||||
|
||||
normalPerm = vec_lvsl(0,normal);
|
||||
numVertexes = tess.numVertexes;
|
||||
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
|
||||
normalVec0 = vec_ld(0,(vector float *)normal);
|
||||
normalVec1 = vec_ld(11,(vector float *)normal);
|
||||
normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
|
||||
incomingVec0 = vec_madd(normalVec0, lightDirVec, zero);
|
||||
incomingVec1 = vec_sld(incomingVec0,incomingVec0,4);
|
||||
incomingVec2 = vec_add(incomingVec0,incomingVec1);
|
||||
incomingVec1 = vec_sld(incomingVec1,incomingVec1,4);
|
||||
incomingVec2 = vec_add(incomingVec2,incomingVec1);
|
||||
incomingVec0 = vec_splat(incomingVec2,0);
|
||||
incomingVec0 = vec_max(incomingVec0,zero);
|
||||
normalPerm = vec_lvsl(12,normal);
|
||||
jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec);
|
||||
jVecInt = vec_cts(jVec,0); // RGBx
|
||||
jVecShort = vec_pack(jVecInt,jVecInt); // RGBxRGBx
|
||||
jVecChar = vec_packsu(jVecShort,jVecShort); // RGBxRGBxRGBxRGBx
|
||||
jVecChar = vec_sel(jVecChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255
|
||||
vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]); // store color
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void RB_CalcDiffuseColor_scalar( unsigned char *colors )
|
||||
{
|
||||
int i, j;
|
||||
float *v, *normal;
|
||||
float incoming;
|
||||
trRefEntity_t *ent;
|
||||
int ambientLightInt;
|
||||
vec3_t ambientLight;
|
||||
vec3_t lightDir;
|
||||
vec3_t directedLight;
|
||||
int numVertexes;
|
||||
ent = backEnd.currentEntity;
|
||||
ambientLightInt = ent->ambientLightInt;
|
||||
VectorCopy( ent->ambientLight, ambientLight );
|
||||
VectorCopy( ent->directedLight, directedLight );
|
||||
VectorCopy( ent->lightDir, lightDir );
|
||||
|
||||
v = tess.xyz[0];
|
||||
normal = tess.normal[0];
|
||||
|
||||
numVertexes = tess.numVertexes;
|
||||
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
|
||||
incoming = DotProduct (normal, lightDir);
|
||||
if ( incoming <= 0 ) {
|
||||
*(int *)&colors[i*4] = ambientLightInt;
|
||||
continue;
|
||||
}
|
||||
j = ri.ftol(ambientLight[0] + incoming * directedLight[0]);
|
||||
if ( j > 255 ) {
|
||||
j = 255;
|
||||
}
|
||||
colors[i*4+0] = j;
|
||||
|
||||
j = ri.ftol(ambientLight[1] + incoming * directedLight[1]);
|
||||
if ( j > 255 ) {
|
||||
j = 255;
|
||||
}
|
||||
colors[i*4+1] = j;
|
||||
|
||||
j = ri.ftol(ambientLight[2] + incoming * directedLight[2]);
|
||||
if ( j > 255 ) {
|
||||
j = 255;
|
||||
}
|
||||
colors[i*4+2] = j;
|
||||
|
||||
colors[i*4+3] = 255;
|
||||
}
|
||||
}
|
||||
|
||||
void RB_CalcDiffuseColor( unsigned char *colors )
|
||||
{
|
||||
#if idppc_altivec
|
||||
if (com_altivec->integer) {
|
||||
// must be in a seperate function or G3 systems will crash.
|
||||
RB_CalcDiffuseColor_altivec( colors );
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
RB_CalcDiffuseColor_scalar( colors );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue